Analytical solutions to some generalized and polynomial eigenvalue problems

نویسندگان

چکیده

Abstract It is well-known that the finite difference discretization of Laplacian eigenvalue problem ? ?u = ?u leads to a matrix (EVP) Ax ?x where A Toeplitz-plus-Hankel. Analytical solutions tridiagonal matrices with various boundary conditions are given in recent work Strang and MacNamara. We generalize results develop analytical certain generalized problems (GEVPs) ?Bx which arise from element method (FEM) isogeometric analysis (IGA). The FEM corner-overlapped block-diagonal while IGA almost In fact, correction Toeplitz-plus-Hankel gives better numerical method. this paper, we focus on finding eigenpairs GEVPs developing methods our motivation. also obtained for some polynomial (PEVPs). Lastly, eigenvector-eigenvalue identity (rediscovered coined recently EVPs) derive trigonometric identities.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Scaling of Generalized and Polynomial Eigenvalue Problems

Scaling is a commonly used technique for standard eigenvalue problems to improve the sensitivity of the eigenvalues. In this paper we investigate scaling for generalized and polynomial eigenvalue problems (PEPs) of arbitrary degree. It is shown that an optimal diagonal scaling of a PEP with respect to an eigenvalue can be described by the ratio of its normwise and componentwise condition number...

متن کامل

extensions of some polynomial inequalities to the polar derivative

توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی

15 صفحه اول

A New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems

In this paper, we represent an inexact inverse subspace iteration method for computing a few eigenpairs of the generalized eigenvalue problem Ax = Bx [Q. Ye and P. Zhang, Inexact inverse subspace iteration for generalized eigenvalue problems, Linear Algebra and its Application, 434 (2011) 1697-1715 ]. In particular, the linear convergence property of the inverse subspace iteration is preserved.

متن کامل

Polynomial Optimization Problems are Eigenvalue Problems

Abstract Many problems encountered in systems theory and system identification require the solution of polynomial optimization problems, which have a polynomial objective function and polynomial constraints. Applying the method of Lagrange multipliers yields a set of multivariate polynomial equations. Solving a set of multivariate polynomials is an old, yet very relevant problem. It is little k...

متن کامل

Polynomial Eigenvalue Solutions to the 5-pt and 6-pt Relative Pose Problems

In this paper we provide new fast and simple solutions to two important minimal problems in computer vision, the five-point relative pose problem and the six-point focal length problem. We show that these two problems can easily be formulated as polynomial eigenvalue problems of degree three and two and solved using standard efficient numerical algorithms. Our solutions are somewhat more stable...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Special Matrices

سال: 2021

ISSN: ['2300-7451']

DOI: https://doi.org/10.1515/spma-2020-0135